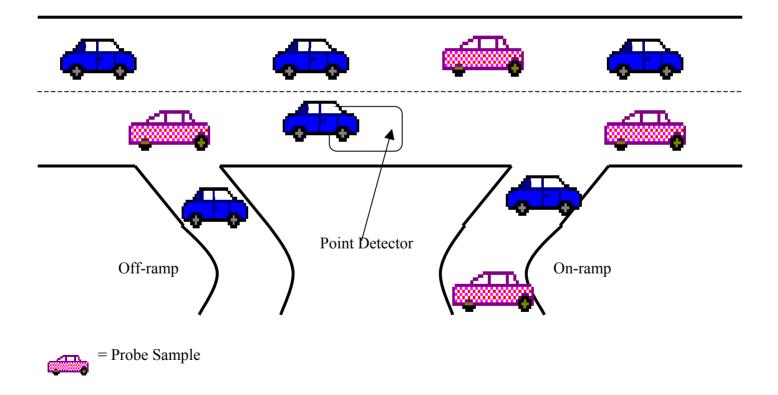
Anonymous Mobile Call Sampling – A New Approach to Traffic Monitoring

Brian L. Smith

Assistant Professor of Civil Engineering University Director – Smart Travel Laboratory

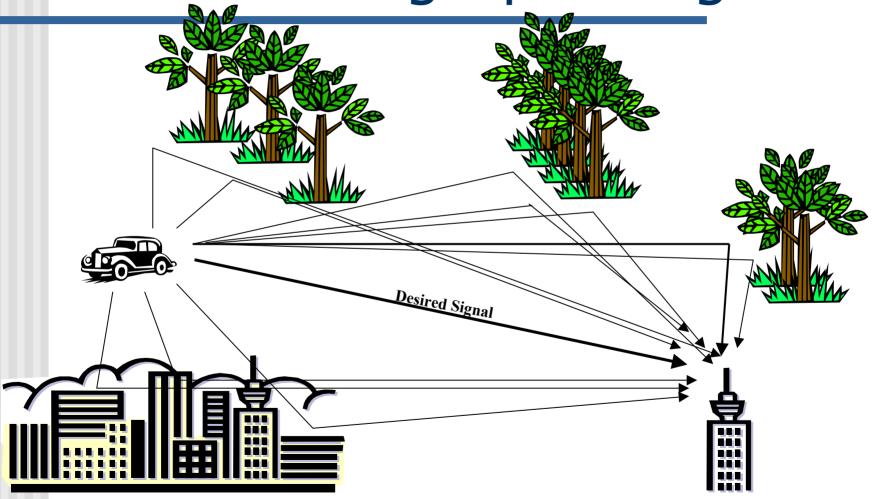

"State" - Foundation of ITS

- Must estimate the state of the transportation system based on incomplete information.
- Sensor Classes
 - Video
 - Point Detectors
 - Probe Vehicles
- Archived ITS data is now being used for a myriad of applications beyond traffic control.

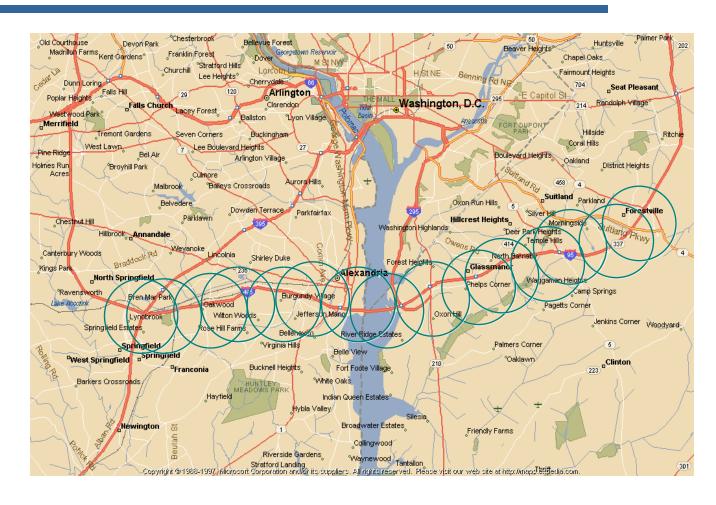
Sampling

- Vehicular traffic flow is a complicated stochastic process that is described by time-dependent parameters: flow, speed, and density.
- These parameters may be considered random variables - we learn about them through sampling in an intelligent manner.

How to Collect Samples


Implementation Issues

- Point Sensors
 - Extensive infrastructure required
 - Harsh sensor environment
- Probe Sensors
 - Probe population
 - AVL tag systems still require infrastructure


Anonymous Mobile Call Sampling

- Geolocate multiple cellular call locations through time
- Requires very little additional infrastructure
- High level of interest in the transportation community.
- Past experience has illustrated significant challenges to this approach

Location Fingerprinting

MD-VA Demonstration Project

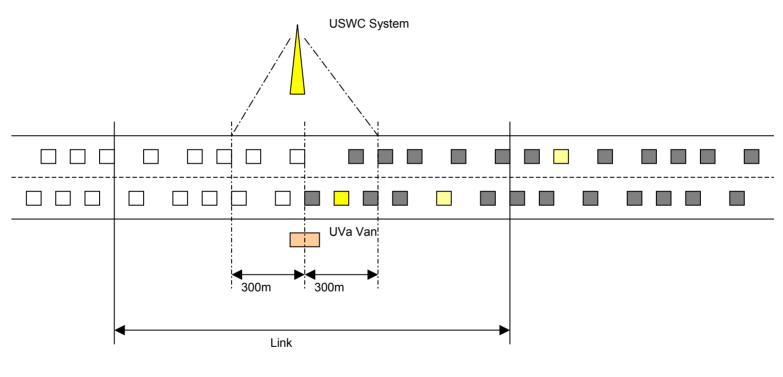
Project Partners

- Virginia Department of Transportation
- Maryland State Highway Administration
- U.S. Wireless Corporation (recently purchased by Trafficmaster USA, Inc.)

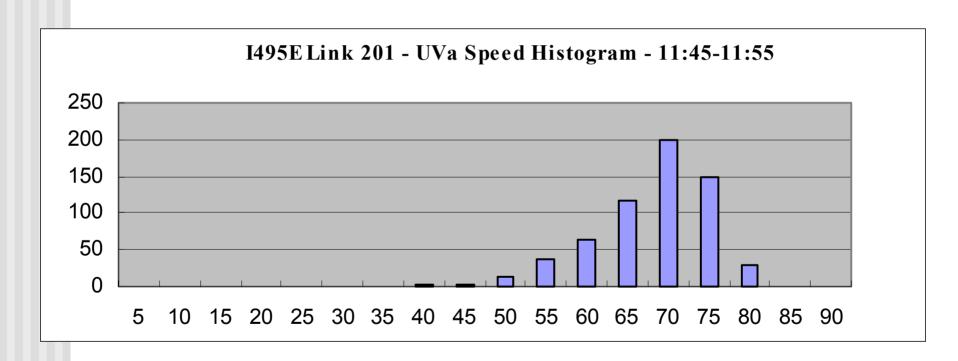
Evaluation Partner: University of Maryland

UVA Role

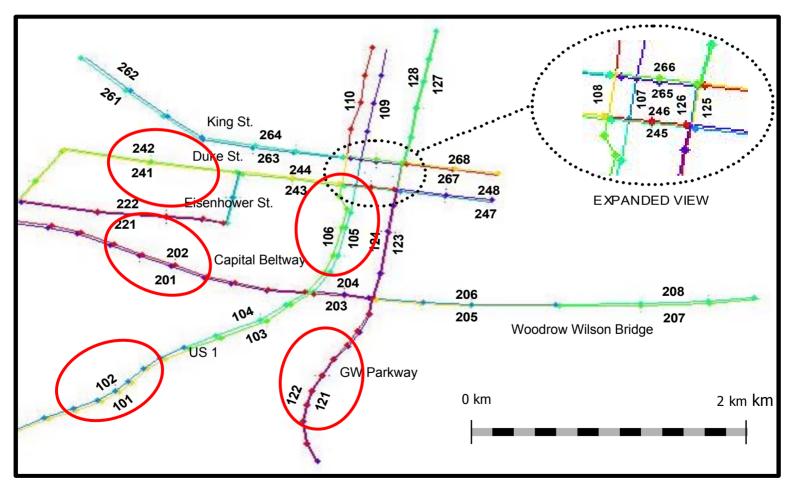
- Investigate
 - Adequacy of "tracked" calls
 - Sample size
 - Accuracy of mean speed estimates
 - Type of facility
 - Time-of-day
- Needed benchmark data
 - Smart Travel Van


Smart Travel Van

- Mobile traffic data collection system
- Designed, developed and integrated by Lab faculty, staff, and students
- Video Detection
 - Image Processing



Link vs. Point Samples



- Vehicle passed the Van location
- Vehicle passed the Van location and also tracked by USWC System, referred as 'probe vehicle'

ST Van - Population

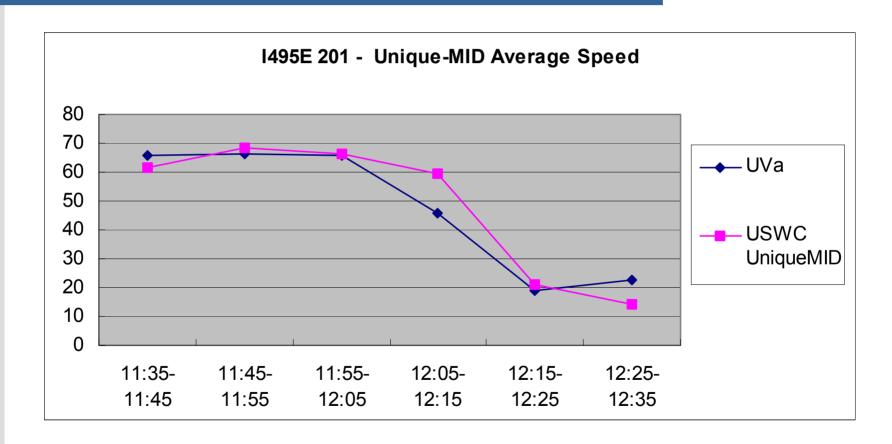
Study Site

Data Collection

Date	Collection Sites	Description			
Sept. 28	I-495 East	East of Telegraph Interchange and West of US1			
3cpt. 28	(Link 201)	Interchange, Speed Limit 55mph, four lanes			
	I-495 East/West (Link 201, 202)	East of Telegraph Interchange and West of US1 Interchange, both direction, Speed Limit 55mph, four lanes			
Oct. 11-	US1 North/South	South of Beltway Interchange, both direction, Speed Limit 45mph, three lanes			
Oct. 12	(Link 103, 104)				
	George Washington Parkway North/South (Link 121,122)	South of Beltway Interchange, both direction, Speed Limit 40mph, one lane			
	I-495 East at night	East of Telegraph Interchange and West of US1			
	(Link 201)	Interchange, Speed Limit 55mph, four lanes			
Nov. 7-	US1 North	North of Beltway Interchange, Speed Limit			
Nov. 8	(Link 105)	30mph, three lanes			
	Duke Street (Link 242)	Speed Limit 40 mph, three lanes			

Conclusion #1

The current RadioCamera system demonstrated the potential to estimate link speeds for high volume


links.

Scenario	Average Interval Error
I-495 Daytime	7.2 mph
I-495 Nighttime (18:30-20:50)	9.2 mph
Arterials	6.8 mph

May 13, 2002

NATMEC 2002

I-495 Link 201 - 10/11/02

Low-Speed Arterial or Collector Facilities

The current RadioCamera system did not demonstrate the capability for traffic monitoring on low-speed arterial or collector facilities in densely developed areas.

Conclusion #2

A probe-based system, such as the RadioCamera system, can operate effectively with small sample sizes.

Theoretical Required Sample Size

$$N = \left(\frac{Z_{\alpha}\sigma}{d}\right)^2 \tag{6.2}$$

Where

N = minimum sample size

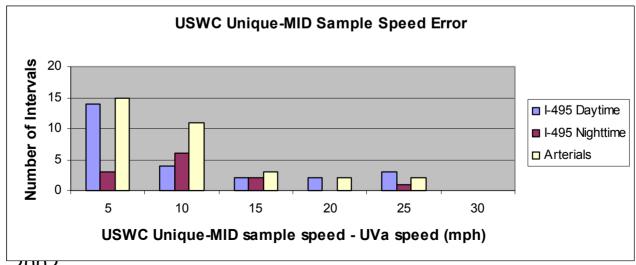
 Z_{α} = number of standard deviations corresponding to the required confidence interval

lpha .

 σ = standard deviation (mph)

d = limit of acceptable error in the mean speed estimate (mph)

Sample Size Adequacy


					Sample		
					required	Sample	USWC
			UVa	UVa	(95%	required	Unique
		UVa	sample	sample	C.I.,	(95% C.I.,	MID
	Time	sample	average	standard	Error=±5	Error=±10	Sample
	interval	size	speed	deviation	mph)	mph)	size
Nov., I-495E, 201	17:40-17:50	850	17.0	5.2	4.1	1.0	22
	17:50-18:00	736	14.2	7.4	8.4	2.1	11
	18:00-18:10	756	15.4	6.8	7.2	1.8	6
	18:10-18:20	873	19.2	6.5	6.5	1.6	16
	18:20-18:30	667	40.9	19.5	58.1	14.5	9
	18:30-18:40	523	64.8	7.9	9.5	2.4	4

Conclusion #3

The ability of the current RadioCamera system to produce link speed estimates on a 10-minute polling interval was not demonstrated.

Concerns

- Sample size
 - System often produced only 0-2 samples per 10-minutes
- Frequent large errors

Microscopic Conclusions (UMd)

- The current RadioCamera System produces sufficiently accurate location estimates.
- The current RadioCamera System can be used for fleet management purposes.
- The current RadioCamera System does not produce sufficiently accurate instantaneous speed estimates for speed enforcement or incident detection using traditional algorithms.

For More Information

Brian L. Smith briansmith@virginia.edu

http://SmartTravelLab.virginia.edu